Явление усталости. Кривая усталости. Предел выносливости. Определение предела выносливости Что определяет величину пределов выносливости

Предел выносливости не является постоянной, присущей данному материалу характеристикой, и подвержен гораздо большим колебаниям, чем механические характеристики при статическом нагружении. Он зависит от условий нагружения, типа цикла, в частности, от степени его асимметрии, формы и размеров детали, технологии ее изготовления, состояния поверхности и других факторов.

Таким образом, при испытании на усталость стандартных образцов определяется собственно не предел выносливости материала, а предел выносливости образца, изготовленного из данного материала. При переходе от образца к реальной детали следует вводить ряд поправок, учитывающих форму и размеры детали, состояние ее поверхности и т. д. В связи с этим возникло понятие сопротивление усталости деталей. В этом понимании предел выносливости далеко отходит от первоначального понятия как характеристики материала, хотя предел выносливости, определенный на стандартных образцах, по-прежнему приводят в числе основных прочностных показателей материала.

Появилось также понятие сопротивление усталости узлов (резьбовых соединений, соединений с натягом и других сборных конструкций). Таким образом, в понятие сопротивления усталости вводят не только факторы свойств материала и геометрической формы деталей, но и факторы взаимодействия со смежными деталями .

Пределы выносливости на изгиб имеют минимальное значение при симметричном знакопеременном цикле, повышаются с увеличением степени его асимметрии, возрастают в области пульсирующих нагрузок, а с уменьшением амплитуды пульсаций приближаются к показателям статической прочности материала. Пределы выносливости при растяжении примерно е 1,1—1,5 раза больше, а при кручении в 1,5—2 раза меньше, чем в случае симметричного знакопеременного изгиба.

Между характеристиками сопротивления усталости и статической прочности нет определенной зависимости. Наиболее устойчивые соотношения существуют между σ -1 (пределом выносливости на изгиб с симметричным циклом) и σ в (пределом прочности), а также σ 0,2 (условным пределом текучести) при статическом растяжении.

По опытным данным, эти соотношения следующие:

Для сталей

Для стальных отливок, высокопрочного чугуна и медных сплавов

Для алюминиевых и магниевых сплавов

Для серого чугуна

На основании обработки результатов испытаний на усталость улучшенных конструкционных сталей Шимек получил следующие зависимости (рис. 163) пределов выносливости от предела прочности:

На растяжение-сжатие при симметричном цикле

На растяжение-сжатие при пульсирующем цикле

На изгиб при симметричном цикле

На кручение при симметричном цикле

На кручение при пульсирующем цикле

Пределы выносливости при симметричном цикле связаны между собой следующими ориентировочными зависимостями:

Пределы выносливости при пульсирующем и знакопеременном симметричном циклах связаны следующими приближенными зависимостями.

Способность материала воспринимать многократное действие переменных напряжений называют выносливостью, а проверку прочности элементов конструкции при действии таких напряжений - расчетом на выносливость (или расчетом на усталостную прочность).

Для получения механических характеристик материала, необходимых для расчетов на прочность при переменных напряжениях, проводят специальные испытания на выносливость (на усталость). Для этих испытаний изготовляют серию совершенно одинаковых образцов (не менее 10 штук).

Наиболее распространены испытания на чистый изгиб при симметричном цикле изменения напряжений; их проводят в следующем порядке.

В первом образце с помощью специальной машины создают циклы напряжений, характеризуемые значениями напряжение принимают достаточно большим (немного меньшим предела прочности материала ), для того, чтобы разрушение образца происходило после сравнительно небольшого числа циклов Результат испытания образца наносят на график в виде точки абсцисса которой равна (в принятом масштабе) числу циклов вызвавших разрушение образца, а ордината - значению напряжения (рис. 5.15).

Затем другой образец испытывают до разрушения при напряжениях результат испытания этого образца изображается на графике точкой Испытывая остальные образцы из той же серии, аналогично получают точки IV, V и т. д. Соединяя полученные по данным опытов точки плавной кривой, получают так называемую кривую усталости, или кривую Вёлера (рис. 5.15), соответствующую симметричным циклам

Аналогично могут быть получены кривые усталости, соответствующие циклам с другими значениями коэффициента асимметрии

Разрушение материала при однократном нагружении происходит в тот момент, когда возникающие в нем напряжения равны пределу прочности Следовательно, кривые усталости при имеют ординаты атах, равные

Кривая выносливости (рис. 5.15) показывает, что с увеличением числа циклов уменьшается максимальное напряжение, при котором происходит разрушение материала. Кривая усталости для мало или среднеуглеродистой, а также для некоторых марок легированной стали имеет горизонтальную асимптоту. Следовательно, при данном значении коэффициента асимметрии R и максимальном напряжении, меньшем некоторой величины, материал не разрушается, как бы велико ни было число циклов.

Наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца из данного материала после произвольно большого числа циклов, называют пределом выносливости. Таким образом, предел выносливости равен ординате асимптоты кривой усталости. Его обозначают ад; при симметричном цикле коэффициент асимметрии и предел выносливости при этом цикле обозначают (см. рис. 5.15).

Совершенно очевидно, что при испытании образца невозможно бесконечно большое число раз повторить один и тот же цикл напряжений, но в этом и нет необходимости. Ординаты атах кривой усталости для некоторых материалов (мало- и среднеуглеродистой стали и др.) после некоторого числа циклов (равного нескольким миллионам) почти не изменяются; поэтому числу циклов, даже в несколько раз большему, на кривой усталости соответствуют такие же максимальные напряжения. В связи с этим число циклов (при испытании материала на выносливость) ограничивают некоторым пределом, который называют базовым числом циклов. Если образец выдерживает базовое число циклов, то считается, что напряжение в нем не выше предела выносливости. Для стали и чугуна базовое число циклов принимают равным 107.

Предел выносливости для стали при симметричном цикле в несколько раз меньше предела прочности (в частности, для углеродистой стали 00,430).

Кривые усталости для цветных металлов и сплавов и некоторых легированных сталей не имеют горизонтальной асимптоты, и, следовательно, такие материалы могут разрушиться при достаточно большом числе циклов, даже при сравнительно малых напряжениях.

Поэтому понятие предела выносливости для указанных материалов условно. Точнее, для этих материалов можно пользоваться лишь понятием предел ограниченной выносливости, называя так наибольшее значение максимального (по абсолютной величине) напряжения цикла, при котором образец еще не разрушается при определенном (базовом) числе циклов. Базовое число циклов в рассматриваемых случаях принимают очень большим - до .

В случаях, когда срок службы элемента конструкции, в котором возникают переменные напряжения, ограничен, максимальные напряжения могут превышать предел выносливости; они, однако, не должны быть больше предела ограниченной выносливости, соответствующего числу циклов за время работы рассчитываемого элемента.

Следует заметить, что предел выносливости при центральном растяжении-сжатии образца составляет примерно 0,7-0,9 предела выносливости при симметричном цикле изгиба. Это объясняется тем, что при изгибе внутренние точки поперечного сечения напряжены слабее, чем наружные, а при центральном растяжении-сжатии напряженное состояние однородно. Поэтому при изгибе развитие усталостных трещин происходит менее интенсивно

Предел выносливости при симметричном цикле кручения для стали составляет в среднем 0,58 (58% предела выносливости при симметричном цикле изгиба).


Преде́л выно́сливости (также преде́л уста́лости ) - в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость , то есть способность воспринимать нагрузки, вызывающие цикличные напряжения в материале.

Предел выносливости определяется, как наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца после произвольно большого числа циклических нагружений.

Предел выносливости обозначают как σ R {\displaystyle \sigma _{R}} , где коэффициент R принимается равным коэффициенту асимметрии цикла r = σ m i n σ m a x {\displaystyle r={\frac {\sigma _{min}}{\sigma _{max}}}} равному отношению минимального напряжения цикла σ m i n {\displaystyle \sigma _{min}} к максимальному σ m a x {\displaystyle \sigma _{max}} . Таким образом, предел выносливости материала в случае симметричных циклов нагружения обозначают как σ -1 {\displaystyle \sigma _{\text{-1}}} , а в случае пульсационных как σ 0 {\displaystyle \sigma _{0}} .

Установлено, что, как правило, для сталей предел выносливости при изгибе составляет половину от предела прочности:

σ -1 ≈ (0 , 4...0 , 5) σ B.P. {\displaystyle \sigma _{\text{-1}}\approx (0,4...0,5)\sigma _{\text{B.P.}}}

Для высокопрочных сталей можно принять:

σ -1 ≈ 400 + 1 / 6 σ B.P. {\displaystyle \sigma _{\text{-1}}\approx 400+1/6\sigma _{\text{B.P.}}}

Для цветных металлов можно принять:

σ -1 ≈ (0 , 25...0 , 5) σ B.P. {\displaystyle \sigma _{\text{-1}}\approx (0,25...0,5)\sigma _{\text{B.P.}}}

Для углепластиков можно принять:

σ -1 ≈ 0 , 8 σ B.P. {\displaystyle \sigma _{\text{-1}}\approx 0,8\sigma _{\text{B.P.}}}

Аналогично можно провести испытания на кручение в условиях циклически изменяющихся напряжений. Для обычных сталей в этом случае можно принять:

τ -1 ≈ 0 , 6 σ -1 {\displaystyle \tau _{\text{-1}}\approx 0,6\sigma _{\text{-1}}}

Для хрупких материалов (высоколегированная сталь, чугун) в этом случае можно принять:

τ -1 ≈ 0 , 8 σ -1 {\displaystyle \tau _{\text{-1}}\approx 0,8\sigma _{\text{-1}}}

Данными соотношениями следует пользоваться с осторожностью, так как они получены при определенных режимах нагружения (изгибе и кручении). При испытаниях на растяжение-сжатие предел выносливости оказывается приблизительно на 10-20 % ниже, чем при изгибе, а при кручении полых образцов он оказывается отличным от полученного при кручении образцов сплошных.

В случае несимметричных циклов образцы испытывают не на изгиб, а на растяжение-сжатие или на кручение с использованием гидропульсаторов. Для несимметричных циклов строят так называемую диаграмму предельных амплитуд. Для этого находят пределы выносливости для выбранного значения постоянного напряжения σ m {\displaystyle \sigma _{m}} при соответствующей амплитуде σ a {\displaystyle \sigma _{a}} . Точка А при этом очевидно будет являться пределом выносливости при симметричном цикле, а точка В, которая не имеет амплитудной составляющей и по сути является постоянно действующим напряжением, будет являть собой фактически предел прочности σ B.P. {\displaystyle \sigma _{\text{B.P.}}} .

Основным параметром, характеризующим усталостную прочность материалов, т.е. прочность при повторяемых знакопеременных нагрузках, является предел выносливости у R - то максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение материала до базового числа N у циклов нагружения. За базовое, т.е. наибольшее число циклов из задаваемых при испытаниях принимают для черных металлов 10 7 циклов нагружения, а для цветных - 10 8 . Индекс в обозначении предела выносливости соответствует коэффициенту асимметрии цикла напряжений при испытаниях. Так, для симметричного цикла предел выносливости обозначается у- 1 , а для отнулевого - у 0 . Предел выносливости материала определяется путем испытания образцов на усталость на испытательных машинах. Наиболее распространенным является испытание образцов при симметричном цикле напряжений. Схема установки для испытания образцов на изгиб показана на рис. 5. Образец 1 вместе с зажимом 2 вращается с постоянной угловой скоростью. На конце образца расположен подшипник 3, нагруженный силой F постоянного направления. Образец подвергается деформации изгиба с симметричным циклом. Максимальные напряжения возникают на поверхности образца в наиболее опасном сечении I - I и определяются как у = М и /W, где М и = F?? - изгибающий момент в сечении; W = 0,1d 3 - момент сопротивления относительно нейтральной оси поперечного сечения образца, круга диаметром d . В представленном положении в точке А действуют растягивающие напряжения, так как образец изгибается выпуклостью вверх. После поворота образца на 180° в точке А будут действовать такие же по величине напряжения сжатия, т.е. -у. При переходе через нейтральную ось напряжение в точке А будет равно нулю.

Путем испытаний до усталостного разрушения одинаковых образцов при разных значениях напряжений цикла строят график, характеризующий зависимость между максимальными напряжениями у и числом циклов до разрушения (циклической долговечностью N). Эта зависимость (рис. 6) называется кривой усталости или кривой Веллера , в честь немецкого ученого, впервые ее построившую. Для построения кривой усталости в координатах у max - N требуется не менее 10 одинаковых образцов, к которым предъявляются жесткие требования по точности размеров, шероховатости поверхности. Первый из образцов нагружают силой F так, чтобы максимальное напряжение цикла у 1 было несколько меньше предела прочности материала (у 1 < у u) и испытывают до разрушения, отмечая (рис. 6) точку А с координатами у 1 и числом циклов до разрушения N 1 .

Второй образец испытывают, создавая в нем напряжение у 2 меньшее, чем в первом (у 2 < у 1) образце. Число циклов до разрушения этого образца будет N 2 (N 2 > N 1). На графике отмечают точку В с координатами у 2 , N 2 . Снижая постепенно в испытываемых образцах максимальное напряжение цикла, испытания проводят до разрушения образцов, пока один из них не разрушится до базового числа N у циклов нагружения. Соединив последовательно плавной линией точки А , В , С , …, построенные при испытаниях образцов, получим кривую усталости. Напряжение, соответствующее базовому числу N у циклов, и есть предел выносливости у - 1 материала при изгибе. На других испытательных машинах аналогично испытанию на изгиб определяют пределы выносливости материала при кручении (ф- 1), при растяжении - сжатии (у- 1р). Экспериментально установлены для многих материалов соотношения между пределами выносливости при изгибе, кручении и растяжении - сжатии. Например, для сталей ф- 1 = 0,55у- 1 ; у- 1р = 0,7у- 1 . Предел выносливости при симметричном цикле нагружения у всех металлов, кроме очень пластичных (медь, техническое железо), меньше предела упругости, с ростом частоты нагружения он незначительно увеличивается.

В литературе предлагаются десятки уравнений, описывающих кривые усталости разных материалов, образцов. В инженерных расчетах чаще всего используют степенное уравнение кривой усталости

у m N = const, (10)

где N - число циклов до разрушения при максимальном напряжении у цикла; m - показатель степени, зависящий от материала, параметров образца, для металлов m = 5 … 10.

Часто срок работы изделий, особенно специального одноразового использования, ограничен, числом циклов нагружения N за время работы меньше базового (N < N у). Уравнение (10)позволяет при расчетах таких изделий на усталостную прочность определять предельно максимальные напряжения в циклах или ограниченный предел выносливости у - 1N , соответствующий заданному числу циклов N нагружения

N = N у (у- 1 /у- 1N) m , (12)

где величины у - 1 , N у , m берут из справочных данных по материалам. Использование уравнений (11) и (12) возможно только при сохранении неизменными физики и механизма усталостного повреждения при сохранении механизма многоцикловой усталости . Многоцикловая усталость гарантировано имеет место, если число циклов до разрушения не менее 10 4 , т.е. N ? 10 4 .

Определение характеристик усталостной прочности материалов путем испытаний на усталость трудоемкий и дорогостоящий процесс из-за длительности и значительного разброса результатов испытаний. Ищут эмпирические зависимости приближенной оценки значений предела выносливости от величины механических свойств материала при статическом нагружении. Так, величина предела выносливости при изгибе с симметричным циклом нагружения для углеродистой стали у- 1 = (0,4 … 0,45)у ut ; для цветных металлов у- 1 = = (0,24 … 0,5)у ut , где у ut - предел прочности материала при растяжении.

Для расчетов на прочность при повторно-переменных напря­жениях требуются механические характеристики материала. Они определяются испытанием на выносливость серии стандартных (тщательно отполированных) образцов на специальных маши­нах. Наиболее простым является испытание на изгиб при симмет­ричном цикле напряжений.

Задавая образцам различные значения напряжений о мах> оп­ределяют число циклов N, при котором произошло их разрушение.

Рис. 3.4. Кривая усталости

По полученным данным строят кривую в координата (Углах --N, называемую кривой усталости (рис. 3.4).

Испытания показывают, что, начиная с некоторого напряжения, кривая стремится к горизонтальной асимптоте. Это озна­чает, что при определенном напряжении o r образец, не разруша­ясь, может выдержать бесконечно большое число циклов нагружения. Опыт показывает, что стальной образец, выдержавший Nо=10 7 циклов, может их выдержать неограниченно много.

Число циклов Nо называют базой испытании. При испытании образца после прохождения No циклов опыт прекращают. Для закаленных сталей и цветных металлов No =10 8 .

Напряжение, соответствующее No, принимают за предел вы­носливости.

Пределом выносливости называется наибольшее напряжение, при котором образец или деталь может сопротив­ляться без разрушения неограниченно долго, и обозначается а я для образца и (o r } d для детали.

Для образцов и деталей при коэффициенте асимметрии цик­ла R= - 1 предел выносли- вости при нормальных напряжениях обозначаются о – 1 и (о - 1) D , а при отнулевом цикле (R=0) соответсвенно о 0 и (о 0) D

При отсутствии в таблицах экспериментальных данных для определения пределов выносливости принимают эмпирические соотношения. Так, например, для углеродистой стали.