Конспект лекций по дисциплине «Автоматизированный электропривод. Частотно-регулируемый асинхронный электропривод - курс лекций Автоматизированный электропривод курс лекций

Современный электропривод представляет собой конструктивное единство электромеханического преобразователя энергии (двигателя), силового преобразователя и устройства управления. Он обеспечивает преобразование электрической энергии в механическую в соответствии с алгоритмом работы технологической установки. Сфера применения электрического привода в промышленности, на транспорте и в быту постоянно расширяется. В настоящее время уже более 60% всей вырабатываемой в мире электрической энергии потребляется электрическими двигателями. Следовательно, эффективность энергосберегающих технологий в значительной мере определяется эффективностью электропривода. Разработка высокопроизводительных, компактных и экономичных систем привода является приоритетным направлением развития современной техники. Последнее десятилетие уходящего века ознаменовалось значительными успехами силовой электроники – было освоено промышленное производство биполярных транзисторов с изолированным затвором (IGBT), силовых модулей на их основе (стойки и целые инверторы), а также силовых интеллектуальных модулей (IPM) с встроенными средствами защиты ключей и интерфейсами для непосредственного подключения к микропроцессорным системам управления. Рост степени интеграции в микропроцессорной технике и переход от микропроцессоров к микроконтроллерам с встроенным набором специализированных периферийных устройств, сделали необратимой тенденцию массовой замены аналоговых систем управления приводами на системы прямого цифрового управления. Под прямым цифровым управлением понимается не только непосредственное управление от микроконтроллера каждым ключом силового преобразователя (инвертора и управляемого выпрямителя, если он есть), но и обеспечение возможности прямого ввода в микроконтроллер сигналов различных обратных связей (независимо от типа сигнала: дискретный, аналоговый или импульсный) с последующей программно-аппаратной обработкой внутри микроконтроллера. Таким образом, система прямого цифрового управления ориентирована на отказ от значительного числа дополнительных интерфейсных плат и создание одноплатных контроллеров управления приводами. В пределе встроенная система управления проектируется как однокристальная и вместе с силовым преобразователем и исполнительным двигателем конструктивно интегрируется в одно целое – мехатронный модуль движения.

Рассмотрим обобщенную структуру электропривода (рис. 6.25). В ней можно выделить два взаимодействующих канала – силового, выполняющего передачу и преобразование энергии из электрической в механическую, и информационного.

В зависимости от требований к электроприводу в качестве электромеханического преобразователя используются различные электрические машины: асинхронные и синхронные переменного тока, коллекторные и бесколлекторные постоянного тока, шаговые, вентильно-реактивные, вентильно-индукторные и т. д.


Информационный канал предназначен для управления потоком энергии, а также сбора и обработки сведений о состоянии и функционировании системы, диагностики ее неисправностей. Информационный канал может взаимодействовать со всеми элементами силового канала, а также с оператором, другими системами электропривода и системой верхнего уровня управления.

Рис. 6.25. Обобщенная структура электропривода

Долгое время массовое применение регулируемых приводов сдерживалось двумя факторами:

относительно малыми допустимыми значениями токов, напряжений и частоты переключений силовых полупроводниковых приборов;

ограничением сложности алгоритмов управления, реализуемых в аналоговой форме или на цифровых микросхемах малой и средней степени интеграции.

Появление тиристоров на большие токи и напряжения решило проблему статического преобразователя для электропривода постоянного тока. Однако необходимость принудительного закрывания тиристоров по силовой цепи существенно усложняла создание автономных инверторов для частотноуправляемого электропривода переменного тока. Появление мощных полностью управляемых полевых транзисторов, обозначаемых в зарубежной литературе MOSFET (Metal – Oxide – Semiconductor Field Effect Transistor), и биполярных транзисторов с изолированным затвором IGBT (Isulated Gate Bipolar Transistor) привело к бурному развитию преобразовательной техники и постоянному расширению сферы применения асинхронных электроприводов с преобразователями частоты. Другим фактором, обусловившим возможность массового внедрения частотноуправляемого электропривода, было создание однокристальных микроконтроллеров достаточной вычислительной мощности.

Анализ продукции ведущих мировых производителей систем привода и материалов опубликованных научных исследований в этой области позволяет отметить следующие ярко выраженные тенденции развития электропривода:

Неуклонно снижается доля систем привода с двигателями постоянного тока и увеличивается доля систем привода с двигателями переменного тока . Это связано с низкой надежностью механического коллектора и более высокой стоимостью коллекторных двигателей постоянного тока по сравнению с двигателями переменного тока. По прогнозам специалистов в начале следующего века доля приводов постоянного тока сократится до 10 % от общего числа приводов.

Преимущественное применение в настоящее время имеют привода с короткозамкнутыми асинхронными двигателями . Большинство таких приводов (около 80 %) – нерегулируемые. В связи с резким удешевлением статических преобразователей частоты доля частотно-регулируемых асинхронных электроприводов быстро увеличивается.

Естественной альтернативой коллекторным приводам постоянного тока являются привода с вентильными , т. е. электронно-коммутируемыми двигателями . В качестве исполнительных бесколлекторных машин постоянного тока (БМПТ) преимущественное применение получили синхронные двигатели с возбуждением от постоянных магнитов или с электромагнитным возбуждением (для больших мощностей). Этот тип привода наиболее перспективен для станкостроения и робототехники, однако, является самым дорогостоящим. Некоторого снижения стоимости можно добиться при использовании синхронного реактивного двигателя в качестве исполнительного.

Приводом следующего века по прогнозам большинства специалистов станет привод на основе вентильно-индукторного двигателя (ВИД). Двигатели этого типа просты в изготовлении, технологичны и дешевы. Они имеют пассивный ферромагнитный ротор без каких-либо обмоток или магнитов. Вместе с тем, высокие потребительские свойства привода могут быть обеспечены только при применении мощной микропроцессорной системы управления в сочетании с современной силовой электроникой. Усилия многих разработчиков в мире сконцентрированы в этой области. Для типовых применений перспективны индукторные двигатели с самовозбуждением, а для тяговых приводов – индукторные двигатели с независимым возбуждением со стороны статора. В последнем случае появляется возможность двухзонного регулирования скорости по аналогии с обычными приводами постоянного тока.

6.2.1. Асинхронные электроприводы
со скалярным управлением

Скалярные способы управления обеспечивали достижение тре­буемых статических характеристик и использовались в электропри­водах со «спокойной» нагрузкой . На входе этих систем, как прави­ло, включались задатчики интенсивности, которые ограничивали скорость нарастания (убывания) входного сигнала до такой величи­ны, при которой процессы в системе можно считать установившимися, то есть в уравнении можно было бы пренебречь слагаемым , так как .

На рис. 6.26 приведены механические характеристики асинхрон­ного короткозамкнутого двигателя для всех четырех законов управ­ления для линейной модели, не учитывающей насыщение магнитопровода. Следует повторить, что перечисленные законы управления широко использовались и хорошо себя зарекомендовали в электро­приводах, где не требуется быстродействия по управлению и нет резких изменений момента нагрузки.

Рис. 6.26. Механические характеристики АКЗ
при различных законах управления

Простейшим из перечисленных законов является первый: .Этот закон при использовании инвертора с синусоидальной ШИМ реализован практически во всех полупроводнико­вых преобразователях, которые выпускаются многочисленными фирмами и предлагаются на рынке. Удобство этого закона заключа­ется в том, что электропривод может работать без отрицательной обратной связи по скорости и обладать естественной жесткостью механических характеристик в ограниченном диапазоне регулиро­вания скорости.

В электроприводах со скалярным управлением для регулирова­ния или стабилизации скорости используются и иные соотношения между частотой и напряжением. Выбор этого соотношения зависит от момента нагрузки и определяется из условий сохранения пере­грузочной способности:

где М max – максимальный момент АКЗ, Μ Н – момент нагрузки на валу машины.

Закон изменения напряжения и частоты, удовлетворяющий тре­бованию (6.15) при допущении r s = 0, установлен
М.П. Костенко. Этот закон имеет вид

где U НОМ , f НОМ , Μ НОМ – номинальные значения, приводимые в паспортных данных машины.

Если закон изменения момента заранее известен, то можно оп­ределить требуемое соотношения напряжения и частоты на выхо­де инвертора. Рассмотрим три классических вида нагрузок на валу машины:

M H = const, ; P H = M H wm = const, ; . (6.16)

В имеющихся на рынке преобразователях часто предусматри­вается возможность перестройки с целью обеспечения всех трех законов. Схема электропривода, реализующая рассмотренные за­коны, показана на рис. 6.27. Функциональный преобразователь (ФП) реализует одну из зависимостей (6.16), определяемую харак­тером нагрузки. Полупроводниковый преобразователь (ПП) вклю­чает в себя автономный инвертор и его систему управления, задатчик интенсивности (ЗИ), как уже было отмечено, формирует медленно нарастающий входной сигнал. В этом случае в электроприводе нарастание скорости не будет сопровождаться интенсивными колебаниями момента и тока, которые наблюдаются при прямом пуске.

Рис. 6.27. Функциональная схема разомкнутого асинхронного

При более сложных нагрузках используются иные законы скалярного регулирования, которые реализуются с использованием обратных связей. Эти законы рассмотрены выше на основании анализа работы асинхронной машины в установившемся режиме.

Рассмотрим ещё один скалярный закон управления, который используется при построении электроприводов с автономными инверторами тока – это закон ψ R = const.

Реализация этой зависимости в электроприводе показана на функциональной схеме (рис. 6.28). Такие системы получили назва­ние частотно-токовых.

Блок ПП в системе может быть реализован двояким способом. В первом случае (рис. 6.28) он содержит управляемый выпрямитель, последовательный индуктивный фильтр и автономный инвертор. Следует подчеркнуть, что индуктивный фильтр придаёт инвертору характеристику источника тока. Такой источник тока называется параметрическим.

Рис. 6.28. Функциональная схема асинхронного
электропривода со скалярным управлением

6.2.2. Асинхронные электроприводы
с векторным управлением

На рис. 6.29 показана структура привода переменного тока с векторным управлением. В качестве исполнительного двигателя может применяться либо синхронный двигатель с активным магнитоэлектрическим ротором, либо синхронный реактивный двигатель. Возможно использование этой структуры и для управления трехфазными вентильно-индукторными двигателями с разнополярным питанием, а также шаговыми двигателями в режиме бесколлекторных двигателей постоянного тока.

В качестве силового преобразователя используется инвертор на IGBT-ключах или интеллектуальных силовых модулях. Драйверы ключей инвертора подключены непосредственно к выходам ШИМ-генератора микроконтроллера, работающего в режиме широтно-импульсной модуляции базовых векторов (векторной ШИМ-модуляции), что обеспечивает максимально высокую степень использования напряжения звена постоянного тока и минимизацию динамических потерь в инверторе (ниже более подробно).

Рис. 6.29. Структурная схема привода
переменного тока с векторным управлением

Структура на рис. 6.29 предполагает использование импульсного датчика положения ротора двигателя. Сигналы с датчика вводятся непосредственно в контроллер и обрабатываются в блоке оценки положения, который может быть реализован на основе специального периферийного устройства – таймера с «квадратурным» режимом работы . Код механического положения ротора программно преобразуется в код электрического положения ротора внутри полюсного деления машины q. Для реализации блока оценки скорости могут применяться либо специальные периферийные устройства микроконтроллера, принцип действия которых основан на измерении временного интервала отработки двигателем заданного отрезка пути (эстиматоры скорости) , либо периферийные устройства общего назначения, такие как процессоры событий или менеджеры событий . В последнем случае таймер, работающий в «квадратурном» режиме является базовым для одного из каналов сравнения. Как только двигатель отработает заданный отрезок пути, возникнет прерывание по сравнению. В процедуре обслуживания этого прерывания центральный процессор определит временной интервал с момента предыдущего прерывания и выполнит расчет текущей скорости привода w. Желательно, чтобы таймер, работающий в «квадратурном» режиме допускал начальную инициализацию в соответствии с числом меток на оборот импульсного датчика положения, а также имел режим автоматической коррекции своего состояния по реперному датчику. Эстиматор скорости должен работать с регулируемым разрешением как по числу импульсов на периоде измерения скорости (от 1 до 255), так и с регулируемым разрешением по времени (максимальное разрешение 50 – 100 нс при диапазоне регулирования разрешения 1:128). Если перечисленные выше требования к периферийным устройствам микроконтроллера будут выполнены, то окажется возможным измерение скорости в диапазоне, как минимум, 1:20000 с точностью, не хуже 0,1%. Для измерения электрических переменных микроконтроллер должен иметь встроенный АЦП с разрешением не ниже 10 – 12 двоичных разрядов и временем преобразования не хуже 5 – 10 мкс. Как правило, восьми каналов АЦП достаточно для приема не только сигналов обратных связей по токам фаз, но и сигналов обратных связей по напряжению и току в звене постоянного тока, а также внешних задающих сигналов. Дополнительные аналоговые сигналы используются для реализации защит инвертора и двигателя. Работа АЦП будет более производительной, если микроконтроллер допускает режим автоматического сканирования и запуска процесса преобразования. Обычно это делается либо с помощью отдельного периферийного устройства – процессора периферийных транзакций , либо с помощью режима автозапуска АЦП от процессора событий или генератора ШИМ-сигналов. Желательно, чтобы выборка как минимум двух аналоговых сигналов была одновременной.

В блоке векторной ШИМ-модуляции выполняется сначала преобразование компонент вектора напряжения к полярной системе координат (g, r), связанной с продольной осью ротора, а затем, с учетом текущего положения ротора q, определяется рабочий сектор, внутрисекторный угол и рассчитываются компоненты базовых векторов в абсолютной системе координат, связанной со статором. Формируются напряжения, прикладываемые к обмоткам двигателя U a , U b , U c . Все перечисленные выше преобразования координат (прямые и обратные преобразования Парка и Кларка) должны выполняться в реальном времени. Желательно, чтобы используемый для реализации системы векторного управления микроконтроллер имел встроенную библиотеку функций , адаптированных для эффективного управления двигателями, в том числе функций преобразования координат. Время реализации каждой из этих функций не должно превышать нескольких микросекунд.

Отличительной особенностью системы векторного управления асинхронными двигателями является необходимость использования дополнительного вычислительного блока, в котором производится оценка текущего углового положения вектора потокосцепления ротора. Это делается на основе решения в реальном времени системы дифференциальных уравнений, составленных в соответствии с математической моделью двигателя. Естественно, что подобная операция требует дополнительных вычислительных ресурсов центрального процессора.

6.2.3. Вентильные и бесконтактные
машины постоянного тока

Бесконтактные машины постоянного тока (БМПТ) и вен­тильные машины (ВМ) – это синхронный двигатель в замкнутой системе (рис. 6.30), реализованной с использова­нием датчика положения ротора (ДПР), преобразователя координат (ПК) и силового полупроводникового преобра­зователя (СПП).

Разница между БМПТ и ВМ заключается только в способе фор­мирования напряжения на выходе силового полупроводникового преобразователя. В первом случае формируется импульсное напряжение (ток) на обмотках машины. Во втором случае на выходе СПП форми­руется синусоидальное или квазисинусоидальное напряжение (ток).

Следует заметить, что БМПТ отличаются от шаговых машин тем, что включены в замкнутую систему формирования напряже­ния. В них напряжение формируется в зависимости от положения ротора, и это является их принципиальным отличием от шаговых, в которых положение ротора зависит от числа управляющих им­пульсов.

Рис. 6.30. Функциональная схема БМПТ и ВМ


Особняком в ряду синхронных машин стоят гистерезисные и реактивные двигатели. Эти машины редко используются в электро­приводе.

Из всех рассмотренных типов синхронных машин в управляе­мых системах наиболее перспективными считаются вентильные машины.

В ряде применений, например, для приводов с вентильно-индукторными и бесколлекторными двигателями постоянного тока, вполне достаточно на интервале коммутации поддерживать в обмотке двигателя заданный фиксированный уровень тока. Структура системы управления при этом заметно упрощается. Особенность схемы (рис. 6.31) состоит в том, что ШИМ‑генератор обеспечивает сразу две функции: автокоммутацию фаз двигателя по сигналам датчика положения и поддержание тока на заданном уровне путем регулирования приложенного к обмоткам двигателя напряжения.

Первая функция может быть реализована автоматически, если генератор имеет встроенный блок управления выходами , допускающий прием команд от процессора событий. Вторая функция традиционна и реализуется путем изменения скважности выходных ШИМ-сигналов. Для оценки положения ротора двигателя можно использовать либо датчик положения на элементах Холла, либо более дорогой импульсный датчик положения. В первом случае сигналы с датчика положения вводятся в микроконтроллер на входы модулей захвата процессора событий .

Отработка двигателем каждого целого шага идентифицируется процессором событий и вызывает автокоммутацию ключей инвертора. Прерывание, возникающее при каждом захвате фронта сигнала с датчика, используется для оценки времени между двумя соседними переключениями и, далее, – скорости привода. Во втором случае можно получить более точную информацию о текущем положении ротора двигателя и о его скорости, что может потребоваться в приводах с интеллигентным управлением углом коммутации в функции скорости. Таким образом, полноценные системы векторного управления приводами переменного тока требуют для своей реализации высокопроизводительных микроконтроллеров с широким набором перечисленных выше встроенных периферийных устройств, допускающих совместную работу и требующих от центрального процессора минимальных ресурсов на свое обслуживание.

Рис. 6.31. Блок-схема системы управления
бесколлекторным двигателем постоянного тока

6.3. Силовые полупроводниковые
преобразователи в системе
автоматизированного электропривода

Силовые полупроводниковые преобразователи в системах автоматики выполняют функцию регулирования скорости и момента электрического двигателя. Они включены между потребителем мощности (как правило, электрическим двигателем) и основным источником питания (рис. 6.32). По принципу действия силовые преобразователи разделяются на следующие базовые типы :

управляемые выпрямители (УВ) , которые преобразуют переменное, обычно синусоидальное напряжение источника питания постоянной частоты (как правило, промышленной
f и = 50 Гц или f и = 400 Гц) и с постоянным действующим значением (обычно U и = 220 В или U и = 360 В), в регулируемое выходное напряжение постоянного тока (U п = var, f п = 0).

широтно-импульсные преобразователи (ШИП) , которые преобразуют постоянное напряжение источника питания
(U и = const, f и = 0) в постоянное регулируемое напряжение постоянного тока на выходе (U п = var, f п = 0).

автономные инверторы (АИ) , которые преобразуют постоянное напряжение питания (U и = const, f и = 0) в переменное напряжение на выходе с регулируемым действующим значением и регулируемой частотой (U п = var, f п = var).

непосредственные преобразователи частоты (НПЧ ) преобразуют переменное, обычно синусоидальное, напряжение постоянной частоты (f и = 400 Гц или f и = 50 Гц) постоянного действующего значения (обычно 220 В) в переменное напряжение на выходе с регулируемым действующим значением и регулируемой частотой (U п = var, f п = var).

Рис. 6.32. Базовые способы использования силовых преобразователей

Следует заметить, что здесь постоянные напряжения (f = 0) характеризуются средними значениями U и.ср, U п.ср, а переменные (f ¹ 0) – действующими значениями (U и, U п).

Таким образом, силовые преобразователи УВ, ШИП могут использоваться для управления (напряжением, током, мощностью) потребителями постоянного тока. Причем, последние могут быть не только электрическими двигателями, но и являться потребителями с активной (резистивной) нагрузкой (такие силовые преобразователями применяются в регулируемых источниках питания). Если источником питания является сеть переменного тока, то может быть применен либо УВ, либо сочетание выпрямителя и ШИП.

Для потребителей переменного тока (которым чаще всего является машина переменного тока) применяется АИ, а при питании от источника переменного тока НПЧ, либо сочетания УВ и АИ, либо выпрямителя и АИ.


6.3.1. Управляемые выпрямители

Источником энергии для управляемых выпрямителей является сеть переменного тока. Принцип управления состоит в том, что в положительный полупериод питающего напряжения электронный ключ (как правило, тиристор) открывается и подает напряжение к потребителю лишь часть этого полупериода. Напряжение и ток на выходе управляемого выпрямителя содержат постоянные и переменные составляющие. Изменяя момент (фазу) открытия электронного ключа, меняют среднее значение напряжения на входе потребителя мощности. Управляемые выпрямители чаще всего используются для управления двигателем постоянного тока по цепи якоря.

Существует большое число различных схем управляемых выпрямителей. По принципу действия и построения они могут быть разделены на две группы: однополупериодные (схемы с нулевым проводом), в которых используют только одну полуволну напряжения сети, и двухполупериодные (мостовые схемы), где использованы обе полуволны переменного напряжения сети.

Рассмотрим работу простейшей двухполупериодной тиристорной схемы с чисто активной нагрузкой R н (рис. 6.33).

К источнику синусоидального напряжения сети U и с амплитудой н через тиристорный мост
VS1 VS4 . Диагональные тиристоры VS1 , VS4 и VS2 , VS3 открываются попарно, поочередно в момент времени, определяемый углом отпирания a.

В интервал α < wt < 180° к нагрузке подводится напряжение U п = U m sin wt .На рис. 6.35 кривая напряжения на нагрузке закрашена темным цветом.

Так как нагрузка активная (резистивная), кривая тока повторяет кривую напряжения. В момент времени wt = 180° ток уменьшается до нуля и соответствующая пара диагональных тиристоров закрывается. Этот процесс повторяется каждый полупериод. Управление тиристорами осуществляют импульсами малой длительности с достаточно крутым передним фронтом, что уменьшает потери мощности в тиристоре при включении, а следовательно, его нагрев.

Рассмотренный фазовый метод управления может быть реализован с помощью фазосдвигающих способов, одним из которых является вертикальный способ управления, основанный на сравнении опорного напряжения (обычно пилообразной формы) и постоянного напряжения сигнала управления. Равенство мгновенных значений этих напряжений определяет фазу a,при которой схема вырабатывает импульс, затем усиливаемый и подаваемый на управляющий электрод тиристора. Изменение фазы aуправляющего импульса достигается изменением уровня напряжения сигнала управления U упр. Функциональная схема управления приведена на рис. 6.34. Опорное напряжение, вырабатываемое генератором пилообразного напряжения ГПН и синхронизированное с напряжением сети с помощью синхронизирующего устройства СУ, подается на схему сравнения СС, на которую одновременно поступает и входное напряжение (сигнал управления). Сигнал со схемы сравнения поступает на формирователь импульсов (ФИ), затем на распределитель импульсов (РИ), на усилители мощности (У), откуда в виде мощного, обладающего крутым фронтом и регулируемого по фазе импульса подается на управляющий электрод.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковская национальная академия городского хозяйства

КОНСПЕКТ ЛЕКЦИЙ

по дисциплине

«Автоматизированный электропривод»

(для студентов 4 курса дневной и заочной форм обучения по специальности 6.090603 – «Электротехнические системы электроснабжения»)

Харьков - ХНАГХ - 2007

Конспект лекций по дисциплине «Автоматизированный электропривод» (для студентов 4 курса всех форм обучения специальности 6.090603 – «Электротехнические системы электроснабжения»). Авт. Гаряжа В.Н., Фатеев В.Н. – Харьков: ХНАГХ, 2007. – 104 стр.

СОДЕРЖАНИЕ


Общая характеристика конспекта лекций

Содержательный модуль 1. Автоматизированный электропривод – основа развития производительных сил Украины . . . . . . . . . . . .

Лекция 1.

1.1.

Развитие электропривода как отрасли науки и техники. . . . . .

6

1.2.

Принципы построения систем управления

Автоматизированным электроприводом. . . . . . . . . . . . . . . . . . .


Лекция 2.

1.3.

Классификация систем управления АЭП. . . . . . . . . . . . . . . . . .

13

Содержательный модуль 2. Механика электропривода . . . . . . . . . .

18

Лекция 3.

2.1.

Приведение моментов и сил сопротивления, моментов инерции. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 4.

2.2.

Уравнение движения электропривода. . . . . . . . . . . . . . . . . . . . .

21

Лекция 5.

2.3.

Механические характеристики двигателя постоянного тока независимого возбуждения. Двигательный режим. . . . . . . . . . .

Лекция 6.

2.4.

Механические характеристики двигателя постоянного тока независимого возбуждения. Режим электрического торможения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 7.

2.5.

Механические характеристики двигателя постоянного тока последовательного возбуждения. Двигательный режим. . . . . .

Лекция 8.

2.6.

Механические характеристики двигателя постоянного тока последовательного возбуждения. Режим электрического торможения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 9.

2.7.

Механические характеристики асинхронных двигателей. Двигательный режим. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 10.

2.8.

Механические характеристики асинхронных двигателей. Режим электрического торможения. . . . . . . . . . . . . . . . . . .. . . . .

Лекция 11.

2.9.

Механические и электрические характеристики синхронных двигателей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Содержательный модуль 3. типовые узлы схем автоматического управления двигателями. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 12.

3.1.

Принципы автоматического управления пуском и торможением двигателей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 13.

3.2.

Типовые узлы схем автоматического управления пуском ДПТ.

77

Лекция 14.

3.3.

Типовые узлы схем автоматического управления торможением ДПТ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 15.

3.4.

Типовые узлы схем автоматического управления пуском двигателей переменного тока. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Лекция 16.

3.5.

Типовые узлы схем автоматического управления торможением двигателей переменного тока. . . . . . . . . . . . . . . .

Лекция 17.

3.6.

Узлы электрической защиты двигателей и схем управления. . .

98

ОБЩАЯ ХАРАКТЕРИСТИКА КОНСПЕКТА ЛЕКЦИЙ

Автоматизированный электропривод – главный потребитель электроэнергии. В промышленно – развитых странах более 65% вырабатываемой электроэнергии преобразовывается электроприводом в механическую энергию. Поэтому развитие и совершенствование электропривода, являющегося основой энерговооруженности труда, способствует росту производительности и повышению эффективности производства. Знание свойств и возможностей электропривода позволяет инженеру – электрику обеспечить рациональное использование электропривода с учетом требований, как технологических машин, так и систем электроснабжения. Предмет «Автоматизированный электропривод» изучается в седьмом семестре четвертого года обучения. Учебным планом специальности «Электротехнические системы электропотребления» на него выделены четыре кредита. Они заполнены шестью содержательными модулями, которые изучаются во время лекционных и практических занятий, при выполнении лабораторных работ и расчетно-графического задания.

В данном конспекте лекций изложен материал для изучения первых трех содержательных модулей предмета «Автоматизированный электропривод». В первом содержательном модуле автоматизированный электропривод рассматривается как основа развития производительных сил Украины. Во втором изучаются механические характеристики двигателей, показывающие возможности двигателя при работе, как в двигательном режиме, так и в режиме электрического торможения. В третьем модуле изучаются типовые узлы схем автоматического управления двигателем. На основании изученных во втором модуле свойств двигателей, типовые узлы обеспечивают автоматический пуск, торможение и реверс двигателей в функциях времени, скорости и тока при прямом или косвенном контроле названных величин. Конструктивно типовые узлы объединяются в виде станций управления. Долевое участие станций управления в общем количестве использующихся в Украине электроприводов превышает 80%.

Лекция 1.

1.1. Развитие электропривода как отрасли науки и техники

С давних времён человек стремился заменить тяжёлый физический труд, который являлся источником механической энергии (МЭ), на работу механизмов и машин. Для этого на транспорте и на сельскохозяйственных работах, на мельницах и оросительных системах он использовал мускульную силу животных, энергию ветра и воды, а позже – химическую энергию топлива. Так появился привод – устройство, состоящее из трёх существенно различных частей: двигателя (Д), механического передаточного устройства (МПУ) и технологической машины (ТМ).

Назначение двигателя: преобразование энергии различных видов в механическую энергию. МПУ предназначено для передачи МЭ от двигателя к ТМ. Оно не влияет на количество передаваемой МЭ (без учёта потерь), но может изменять её параметры и для согласования видов движения выполняется в виде ременной, цепной, зубчатой или других механических передач.

В технологической машине МЭ используется для изменения свойств, состояния, формы или положения обрабатываемого материала или изделия.

В современных приводах в качестве источника МЭ используются различные электрические двигатели (ЭД). Они преобразуют электрическую энергию (ЭЭ) в механическую и поэтому привод получил название электропривода (ЭП). Его функциональная схема приведена на рис. 1.1. В её состав, кроме названых элементов, входит управляемый преобразователь (П), с помощью которого ЭЭ от сети подаётся к ЭД.

Изменяя сигнал управления преобразователем U у , можно изменять количество ЭЭ, поступающей от сети к ЭД. В результате этого будет изменяться количество МЭ, вырабатываемой двигателем и получаемой ТМ. Это, в свою очередь, приведёт к изменению технологического процесса, эффективность которого характеризуется регулируемой величиной y(t) .

Приоритет в создании электропривода принадлежит русским учёным

Б.С. Якоби и Э.Х. Ленцу, которые в 1834 году изобрели двигатель постоянного тока, а в 1838 году применили его для приведения в движение катера. Однако несовершенство двигателя и неэкономичность источника электрической энергии (гальванической батареи) не позволили этому электроприводу найти практическое применение.

В середине ХІХ века попытки применения ЭП с двигателем постоянного тока для типографских и ткацких машин предпринимались учёными Франции и Италии. Однако система постоянного тока не давала удовлетворительного решения. К 1890 году только 5 % общей мощности двигателей приводов составляли электрические двигатели.

Широкое применение электропривода связано с изобретением в 1889-1891 годах русским инженером Доливо–Добровольским системы трёхфазного переменного тока и трёхфазного асинхронного двигателя. Простота трёхфазной системы, возможность централизованного производства электроэнергии, удобство её распределения привели к тому, что к 1927 году уже 75 % общей мощности двигателей приводов составляли электрические двигатели.

В настоящее время в ведущих отраслях промышленности отношение установленной мощности электроприводов к общей установленной мощности приводов с двигателями всех видов (тепловых, гидравлических, пневматических) приближается к 100 %. Это определяется тем, что ЭД изготавливаются на разнообразные мощности (от сотых долей ватта до десятков тысяч киловатт) и скорости вращения (от долей оборота вала в минуту до нескольких сотен тысяч оборотов в минуту); ЭП работает в среде агрессивных жидкостей и газов при низких и высоких температурах; благодаря управляемости преобразователя, ЭП легко регулирует ход технологического процесса, обеспечивая различные параметры движения рабочих органов ТМ; он обладает высоким к.п.д., надёжен в эксплуатации и не загрязняет окружающую среду.

В настоящее время суммарная установленная мощность электрических генераторов Украины превышает 50 млн. кВт. Для распределения такой мощности на всех уровнях напряжения созданы и электрические сети.

Однако в связи со спадом, в первую очередь, промышленного производства обеспечение реального потребления электроэнергии на Украине осуществляется за счет половины указанной мощности. Такой существенный энергетический запас является надежной основой для развития производственных сил Украины, связанного с внедрением новых энергосберегающих технологий, выпуском современной высокотехнологичной продукции, дальнейшим развитием автоматизации и механизации производства. Решение всех, без исключения, названных задач обеспечивается применением различных систем электропривода, увеличением потребления электроприводом электрической энергии, которое в существующей структуре потребления уже приближается к 70%.

1.2. Принципы построения систем управления автоматизированным электроприводом

Отличительной особенностью современного электропривода является то, что в нём сигнал управления преобразователем U у формируется специальным автоматическим управляющим устройством (АУУ) без непосредственного участия человека. Такое управление называют автоматическим, а электропривод – автоматизированным (АЭП).

Систему управления АЭП, как и любую другую систему автоматического управления, можно рассматривать как систему, воспринимающую и перерабатывающую информацию.

В первом канале формируется информация о требуемом значении регулируемой величины q(t) (задающее воздействие).

Во втором канале с помощью датчиков может быть получена информация о действительном значении регулируемой величины y(t) или других величинах, характеризующих ЭП.

Третий канал может подавать в систему управления информацию о возмущающих воздействиях f i (t) в виде сигнала x i (t) .

В зависимости от количества используемых каналов информации различают три принципа построения систем управления автоматизированным электроприводом:

1) принцип разомкнутого управления;

2) принцип замкнутого управления;

3) принцип комбинированного управления.

Рассмотрим функциональные схемы систем управления АЭП.

Систему управления АЭП, построенную по принципу разомкнутого управления, называют разомкнутой системой. В ней используется только один канал информации – о требуемом значении регулируемой величины q(t) . Функциональная схема такой системы управления приведена на рис.1.2.

В узел суммирования на входе АУУ, как и в предыдущем случае, от КО подаётся информация о q(t) . Стрелка, обозначающая q(t) , направлена в незатемнённый сектор узла суммирования. Это означает, что задающий сигнал поступает в узел суммирования со знаком «+».

Автоматическое управляющее устройство формирует сигнал управления преобразователем U y , используя только информацию о величине задающего воздействия q(t) , которое на вход АУУ подаётся от командного органа (КО). В результате того, что на каждый элемент функциональной схемы оказывают влияние возмущающие воздействия f i (t) , количество поступающей к технологической машине механической энергии, а значит и ход

Рис. 1.2 - Функциональная схема разомкнутой системы управления АЭП

технологической операции будут изменяться. В результате этого действительное значение регулируемой величины y(t) может существенно отличаться от требуемого значения q(t) . Разность между требуемым и действительным значением регулируемой величины в установившемся режиме (когда регулируемая величина y(t) не изменяется во времени) называют ошибкой управления Δx(t)= q(t)– y(t) .

Разомкнутые системы АЭП применяются в том случае, если появление ошибки управления не приводит к существенным потерям в технологии (уменьшению производительности ТМ, снижению качества продукции и др.)

В противном случае, когда появление ошибки управления значительно снижает эффективность технологического процесса, для построения системы управления АЭП используют принцип замкнутого управления. Называют такую систему замкнутой.

В ней используются два канала информации: к информации о требуемом значении регулируемой величины q(t) добавляется информация о действительном значении регулируемой величины y(t) . Функциональная схема такой системы управления приведена на рис.1.3.

Информация о действительном значении регулируемой величины y(t) подаётся в узел суммирования с помощью главной обратной связи (ГОС). Говорят, что ГОС «замыкает» систему управления, соединяя её выход с входом.

Стрелка, обозначающая y(t) , направлена в затемнённый сектор узла суммирования, т.е. сигнал ГОС поступает в узел суммирования со знаком «–» и поэтому ГОС называется отрицательной обратной связью.

Рис. 1.3 - Функциональная схема замкнутой системы управления АЭП.

В узле суммирования в результате алгебраического (с учётом знака) сложения сигналов q(t) и y(t) осуществляется определение величины и знака ошибки управления Δx(t)= +q(t) – y(t) . Сигнал ошибки поступает на вход АУУ. Благодаря этому АУУ, формируя сигнал управления преобразователем П на основании информации о реально существующем соотношении заданного и действительного значения регулируемой величины обеспечивает подачу к ЭД такого количества ЭЭ, а к технологической машине МЭ, что ошибка управления может быть уменьшена до допустимой величины или сведена к нулю.

Кроме ГОС, в системе управления могут быть различные внутренние по отношению к ГОС обратные связи (ВОС). Они контролируют промежуточные параметры системы, что улучшает качество процесса управления. Систему, содержащую только ГОС, называют одноконтурной, а имеющую, кроме ГОС, ещё и ВОС – многоконтурной.

В системе, построенной по комбинированному принципу, объединены две структуры – замкнутая и разомкнутая. К замкнутой системе, которая является основной, добавляется разомкнутая структура по третьему каналу информации x 1 (t) об основном возмущающем воздействии f 1 (t). Функциональная схема системы приведена на рисунке 1.4.

Основным является возмущающее воздействие, которое имеет наибольшую составляющую в величине ошибки управления.


Рис. 1.4 - Функциональная схема комбинированной системы управления АЭП

На рис. 1.4 за основное, принято возмущающее воздействие f 1 (t) . Оно контролируется промежуточным элементом (ПЭ) и информация о нём x 1 (t) подаётся в узел суммирования. Благодаря этому, АУУ вводит в сигнал управления преобразователем составляющую, которая компенсирует влияние f 1 (t) на технологический процесс и уменьшает величину ошибки управления. Влияние других возмущающих воздействий на ошибку ликвидирует основная замкнутая система.

Рассмотренные примеры позволяют дать определение понятию «автоматизированный электропривод».

Автоматизированный электропривод представляет собой электромеханическую систему, в которой, во-первых, осуществляется преобразование электрической энергии в механическую. Посредством этой энергии приводятся в движение рабочие органы технологической машины. И, во-вторых, происходит управление процессом преобразования энергии с целью обеспечения требуемых установившихся и переходных режимов работы ТМ.

Лекция 2.

1.3. Классификация систем управления АЭП

Классификация систем управления АЭП может проводиться по многим признакам: по роду тока двигателя системы разделяются на переменный и постоянный ток. По виду сигналов информации и управления – на непрерывные и дискретные системы. В зависимости от характера уравнений, описывающих процессы управления – на линейные и нелинейные системы. Часто их подразделяют по виду преобразователя или основной аппаратуры: система - генератор постоянного тока –двигатель (Г–Д); система - тиристорный преобразователь – двигатель (ТП–Д); система - тиристорный преобразователь частоты – двигатель (ТПЧ–Д) и др.

Однако наибольшее распространение получила классификация систем управления АЭП по функциям, выполняемым ими в технологических процессах. Таких функций можно выделить пять.

1. Системы управления процессами пуска, торможения, реверса. Среди них, в свою очередь, можно выделить три группы систем.

Системы первой группы разомкнутые. Применяются в электроприводах с асинхронными двигателями с короткозамкнутым ротором. Преобразователь состоит из силового переключающего устройства (СПУ), подключающего двигатель непосредственно к сети. Вся аппаратура управления – релейного действия (контактная или бесконтактная).

Системы управления второй группы выполняются также разомкнутыми. Они применяются в электроприводах с двигателями постоянного тока и асинхронными двигателями с фазным ротором, имеют более сложную структуру СПУ, обеспечивающих ступенчатое переключение резисторов или других элементов в силовых цепях двигателя. Обеспечивают управление автоматическим пуском и торможением, при котором ограничиваются ток и момент двигателя. При ручном управлении СПУ возможно регулирование скорости в малом диапазоне.

Системы третьей группы предназначены для осуществления оптимальных процессов пуска, торможения, реверса. Под оптимальными в данном случае понимают переходные процессы, протекающие за минимальное время. Это обеспечивается поддержанием в процессе пуска и торможения величины вращающего момента двигателя на уровне допустимого значения.

Применяются такие системы в электроприводах с повторно-кратковременным режимом работы, когда время установившегося режима мало, либо вовсе отсутствует. Поэтому появление ошибки управления не будет приводить к потерям в технологии и система может не иметь ГОС.

Замкнутый контур регулирования в такой системе образуется отрицательной обратной связью по моменту (току) двигателя. На рис.1.4 она показана как ВОС. Регулируемой величиной в данном случае становится момент двигателя. Поэтому АУУ формирует сигнал управления П таким образом, чтобы в процессе пуска и торможения момент поддерживался на требуемом уровне или изменялся во времени по необходимому закону.

2. Системы поддержания постоянным заданного значения регулируемой величины (системы стабилизации). Регулируемыми являются величины, характеризующие движение рабочего органа ТМ и вала двигателя – скорость, ускорение, момент, мощность и др.

Системы стабилизации построены по замкнутому принципу и могут иметь функциональную схему, приведенную на рис.1.4. В такой системе задающий сигнал q(t)=const. Поэтому уменьшение регулируемой величины y(t) , вызванное появлением возмущающего воздействия f 1 (t) , будет приводить к увеличению сигнала ошибки управления на входе АУУ. Автоматическое управляющее устройство формирует сигнал управления преобразователем в зависимости от применяемого в нём закона управления (типа регулятора). При пропорциональном законе управления в качестве регулятора используется пропорциональное (усилительное) звено с коэффициентом усиления большим единицы (П – регулятор). Поэтому при увеличении сигнала ошибка на входе П – регулятора будет увеличиваться и сигнал управления преобразователем. В результате этого будет увеличиваться количество ЭЭ и МЭ, что приведёт к увеличению y(t) и уменьшению ошибки управления. Однако она не может быть компенсирована полностью, так как в этом случае сигналы на входе и выходе П – регулятора будут равны нулю, к двигателю не будет подаваться ЭЭ и технологический процесс остановится.

Систему стабилизации, в которой ошибка управления не сводится к нулю, а только лишь уменьшается до допустимой величины, называют статической.

При пропорционально – интегральном законе управления регулятор состоит из двух включённых параллельно звеньев – пропорционального и интегрального (П-И – регулятор). Сигнал ошибки поступает одновременно на вход обоих звеньев. Пропорциональная часть регулятора, как и в предыдущем случае, будет усиливать сигнал ошибки. Интегральная часть регулятора сигнал ошибки будет суммировать, т.е. её выходной сигнал будет увеличиваться до тех пор, пока на входе регулятора имеется сигнал ошибки. Поскольку выходной сигнал регулятора (сигнал управления преобразователем) является суммой выходных сигналов пропорциональной и интегральной частей, то до тех пор, пока на входе регулятора будет сигнал ошибки, его выходной сигнал будет увеличиваться. В результате этого будет увеличиваться количество ЭЭ и МЭ в системе и уменьшаться ошибка управления. Когда сигнал ошибки на входе регулятора станет равным нулю, сигнал на выходе регулятора будет больше нуля, благодаря тому, что интегральная часть регулятора после исчезновения сигнала на её входе запоминает суммарное значение выходного сигнала. К двигателю будет подаваться ЭЭ и технологический процесс будет продолжаться.

Систему стабилизации, в которой ошибка управления сводится к нулю, называют астатической.

При пропорционально – интегрально – дифференциальном законе управления параллельно П, И. – звеньям включают дифференцирующее звено (П – И –Д – регулятор).

Выходной сигнал дифференциальной части прямопропорционален скорости изменения сигнала ошибки управления. Суммируясь с сигналами П, И частей регулятора, он дополнительно увеличивает сигнал управления преобразователем и количество ЭЭ, поступающей к двигателю. Это способствует уменьшению динамической ошибки управления, т.е. разности между требуемым и действительным значением регулируемой величины во время переходного режима в системе.

Применяются системы стабилизации в случаях необходимости особо точного поддержания какого-либо параметра техпроцесса, а также при регулировании скорости двигателя в большом диапазоне.

Для формирования процессов пуска и торможения система стабилизации может иметь внутреннюю обратную связь по моменту двигателя (ВОС на рис. 1.4).

Разомкнутый канал управления по основному возмущающему воздействию уменьшает ошибку управления в статических системах.

3. Следящие системы. Как и системы стабилизации построены по замкнутому принципу. Однако задающий сигнал q(t) в них изменяется по случайному закону и действительное значение регулируемой величины y(t) должно повторять (отслеживать) этот закон.

Применяются в технологических машинах, которые требуют, чтобы при повороте входного вала на любой угол выходной вал «следил» за входным и поворачивался на такой же угол.

Когда положение валов совпадает q(t) = y(t) и ошибка управления равна нулю. При изменении положения входного вала q(t) ≠ y(t) . На входе АУУ появляется сигнал ошибки, преобразователь подаёт ЭЭ на двигатель и выходной вал будет вращаться до тех пор, пока не займёт положение входного.

4. Системы программного управления. Применяются в технологических машинах, имеющих несколько электроприводов. Эти привода могут быть построены как по разомкнутому, так и по замкнутому принципу. Общим для них является устройство, изменяющее заданное значение регулируемой величины каждого электропривода по заранее заданной программе. При этом двигатели отдельных рабочих органов автоматически запускаются, работают с заданными скоростями или реверсируются, а перемещающиеся рабочие органы технологической машины не мешают друг другу.

5. Адаптивные системы. Применяются в тех случаях, когда система, построенная по замкнутому принципу, в результате непредвиденных изменений возмущающих воздействий не способна выполнить свою функцию, например, стабилизацию регулируемой величины.

Для обеспечения адаптации (приспосабливаемости) замкнутой системы в её состав вводят дополнительный контур, основу которого составляет вычислительное устройство. Оно контролирует величину q(t) , y(t) , возмущающие воздействия f i (t) , анализирует работу системы стабилизации и определяет необходимые для адаптации изменения параметров или структуры АУУ.

Лекция 3.

2.1. Приведение моментов и сил сопротивления, моментов инерции и инерционных масс

К механической части электропривода относятся вращающаяся часть двигателя, механическое передаточное устройство и рабочий орган технологической машины.

Вращающая часть двигателя (якорь или ротор) служит источником механической энергии.

С помощью МПУ осуществляется преобразование вращательного движения двигателя в поступательное движение рабочего органа ТМ или за счёт изменения соотношения скоростей входного и выходного валов МПУ согласовываются скорости вращения двигателя и рабочего органа. В качестве МПУ могут использоваться цилиндрические и червячные редукторы, планетарная передача, пара винт – гайка, кривошипно-шатунная, реечная, ременная и цепная передачи.

Рабочий орган ТМ является потребителем механической энергии, которую он преобразует в полезную работу. К числу рабочих органов можно отнести шпиндель токарного или сверлильного станка, движущую часть конвейера, ковш экскаватора, кабину лифта, винт теплохода и др.

Элементы механической части ЭП связаны друг с другом и образуют кинематическую цепь, каждый элемент которой имеет свою скорость движения, характеризуется моментом инерции или инерционной массой, а также совокупностью действующих на него моментов или сил. Механическое движение любого из элементов определяется вторым законом Ньютона. Для элемента, вращающегося вокруг неподвижной оси уравнение движения имеет вид:

Где
– векторная сумма моментов, действующих на элемент;

J – момент инерции элемента;

– угловое ускорение вращающегося элемента.

Для поступательно движущегося элемента уравнение движения имеет вид:

,

Где
– векторная сумма сил, действующих на элемент;

m – инерционная масса элемента;

– линейное ускорение поступательно движущегося элемента.

С помощью этих уравнений может быть учтено взаимодействие любого элемента с остальной частью кинематической цепи. Это удобно осуществлять путём приведения моментов и усилий, а также моментов инерции и инерционных масс. В результате этой операции (приведения) реальная кинематическая схема заменяется расчётной, энергетически эквивалентной схемой, основу которой составляет тот элемент, движение которого рассматривается. Как правило, этим элементом является вал двигателя М. Это позволяет наиболее полно исследовать характер движения электропривода и режим его работы. Зная параметры кинематической схемы, можно определить и вид движения рабочего органа технологической машины.

Приведение моментов сопротивления от одной оси вращения к другой производится на основании баланса мощности в системе.

В ходе технологической операции рабочий орган, вращающийся на своей оси со скоростью ω м и создающий момент сопротивления М см , потребляет мощность Р м см ω м . Потери мощности в МПУ учитываются делением величины Р м на к.п.д. передачи η п . Эту мощность обеспечивает двигатель, вращающийся со скоростью ω и развивающий момент М с , равный приведенному к оси вращения вала двигателя моменту сопротивления М см . На основании равенства мощностей получим:

.

Тогда выражение для определения приведенного момента сопротивления М с имеет вид:

,

Где
– передаточное число МПУ.

Приведение сил сопротивления производится аналогично. Если скорость поступательного движения рабочего органа ТМ равна υ м и в ходе технологической операции создаётся сила сопротивления F см , то с учётом к.п.д. МПУ уравнение баланса мощностей будет иметь вид:

.

Приведенный момент сопротивления М с будет равен:

,

Где
– радиус приведения МПУ.

Каждый из вращающихся элементов кинематической схемы характеризуется моментом инерции J і . Приведение моментов инерции к одной оси вращения основано на том, что суммарный запас кинетической энергии движущихся частей привода, отнесённый к одной оси, остаётся неизменным. При наличии вращающихся частей, обладающих моментами инерции J д , J 1 , J 2 , … J n и угловыми скоростями ω, ω 1 , ω 2 , … ω n можно заменить их динамическое действие действием одного элемента, обладающего моментом инерции J и вращающегося со скоростью ω .

В таком случае можно записать уравнение баланса кинетической энергии:

.

Суммарный момент инерции, приведенный к валу двигателя будет равен:

,

Где J д – момент инерции ротора (якоря) М;

J 1 , J 2 , … J n – моменты инерции остальных элементов кинематической схемы.

Приведение инерционных масс m , движущихся поступательно, осуществляется также на основании равенства кинетической энергии:

,

Отсюда момент инерции, приведённый к валу двигателя будет равен:

.

В результате выполнения операций приведения реальная кинематическая схема заменяется расчётной, энергетически эквивалентной схемой. Она представляет собой тело, вращающееся на неподвижной оси. Этой осью является ось вращения вала двигателя. На него действуют вращающий момент двигателя М и приведенный момент сопротивления М с . Вращается тело со скоростью двигателя ω и обладает приведенным моментом инерции J .

В теории электропривода такая расчётная схема получила название одномассовой механической системы. Она соответствует механической части АЭП с абсолютно жёсткими элементами и без зазоров.

В предлагаемом вашему вниманию учебном пособии учебном пособии речь пойдет об основах электрического привода и наиболее перспективном его виде - асинхронном частотно-регулируемом электроприводе. Пособие предназначено для работников занимающихся продвижением на рынок сложной электротехнической продукции, какой является автоматизированные электроприводы и для студентов электротехнических специальностей.

Лектор: Онищенко Георгий Борисович. Доктор технических наук, профессор. Действительный член Академии электротехнических наук РФ.

В серии видеолекций рассмотрены следующие вопросы:

1. Функции и структура автоматизированного электропривода.

2. Общая характеристика регулируемого электропривода.

3. Принцип работы асинхронного двигателя.

4. Частотное регулирование скорости асинхронного двигателя.

5. Силовые управляемые полупроводниковые приборы.

6. Структурная схема преобразователя частоты.

7. Автономный инвертор напряжения. Принцип широтно-импульсной модуляции.

8. Выпрямитель и звено постоянного тока в составе преобразователя частоты.

9. Структурные схемы регулирования частотно-регулируемого электропривода.

10. Особенности высоковольтных преобразователей частоты.

11. Области применения частотно-регулируемого электропривода.

Рассмотрение данных вопросов позволит получить достаточно полное представление о составе, принципах работы, схемном построении, технических характеристиках и областях применения частотно-регулируемого асинхронного электропривода.

Лекция 1. Функции и структура автоматизированного электропривода

Задачи первой лекции дать представление о роли и значении автоматизированного электропривода в современном промышленном производстве и в электроэнергетической системе страны.

Лекция 2. Регулируемый электропривод - основной вид современного электропривода

Рассмотрены общие вопросы связанные с созданием и использование регулируемых электроприводов.

Лекция 3. Принцип работы асинхронного электродвигателя

Конструктивные особенности и основные характеристики наиболее распространенных электрических машин - асинхронных двигателей. Эти двигатели широко используются в промышленности, сельском и коммунальном хозяйстве и других областях. Диапазон мощностей выпускаемых асинхронных двигателей очень широк - от сотен ватт до нескольких тысяч киловатт, но принцип работы этих машин один для всех габаритов и модификаций.

Лекция 4. Частотное регулирование скорости асинхронного двигателя

Наиболее эффективным способом регулирования скорости асинхронного двигателя является изменение частоты и амплитуды трехфазного напряжения, прикладываемого к обмоткам асинхронного двигателя. Этот способ регулирования в последние годы получил самое широкое применение для электроприводов различного назначения, как низковольтных с напряжением до 400 В, так и высоковольтных большой мощности напряжением 6,0 и 10,0 кВ.

В настоящем разделе излагаются принципы регулирования скорости двигателя посредством изменения частоты подводимого напряжения, приводятся возможные алгоритмы изменения не только частоты, но и амплитуды напряжения и анализируются характеристики привода, получаемые при частотном способе регулирования.

Лекция 5. Принцип работы и структура преобразователя частоты

Создание и серийное производство полностью управляемых силовых полупроводниковых приборов оказало революционизирующее воздействие на развитие многих видов электрооборудования, прежде всего, на электрический привод. К новым полностью управляемым полупроводниковым приборам относятся биполярные транзисторы с изолированным затвором (IGBT) и запираемые тиристоры с комбинированным управлением. На их основе стало возможным создание преобразователей частоты для питания двигателей переменного тока и плавного регулирования их скорости вращения. В данном разделе рассмотрены характеристики новых силовых полупроводниковых приборов и приведены их параметры.

Лекция 6. Скалярные системы управления электродвигателем

Для электроприводов, работающих с ограниченным диапазоном регулирования скорости и в тех случаях, когда не требуются высокие показатели по быстродействию и точности регулирования применяются более простые скалярные системы регулирования, которые рассматриваются в данном разделе.

Модуль № 7 "Векторное управление частотно-регулируемыми электроприводами"

Векторное управление асинхронным двигателем базируется на достаточно сложных алгоритмах, отражающих представление электромагнитных процессов в двигателе в векторной форме. В настоящей лекции мы постараемся изложить основы векторного управления несколько упрощенно, избегая сложных математических выкладок.

Скоро будет продолжение!

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД

КУРС ЛЕКЦИЙ

для специальности 110302.65 – «Электрификация и автоматизация сельского хозяйства» очной и заочной формы обучения

Автоматизированный электропривод: Курс лекций \ Сост. И.В.Атанов. – Ставрополь: СтГАУ, кафедра ПЭЭСХ, 2008. - 124 с.

Данное учебное пособие состоит из лекций по автоматизированному электроприводу в соответствии с государственным стандартом высшего профессионального образования по направлению 660300 – Агроинженерия.

Курс лекций предназначен для студентов очной и заочной формы обучения специальности 110302.65 – «Электрификация и автоматизация сельского хозяйства» и может использоваться, как на учебных занятиях, так и при самостоятельной работе студентов.

ВВЕДЕНИЕ

Курс лекций разработан для подготовки специалистов по специальности 110302.65 – «Электрификация и автоматизация сельского хозяйства» по направлению 660300 – «Агроинженерия».

Лекционный материал содержит 15 лекций по дисциплине «Автоматизированный электропривод» и базируется на двух предыдущих курсах «Основы электропривода» и «Электропривод с.-х. машин».

Особое внимание при изложении материала уделено средствам и системам регулирования координат электроприводов постоянного и переменного тока.

При изложении материала использованы различные шрифты и выделения, которые позволили структурировать материал, облегчить его усвоение.

Важным элементом изучения учебного материала является система сокращений терминов, определений часто встречающихся по тексту. Данные сокращения вводятся и расшифровываются по мере первого упоминания.

Представленный лекционный материал основывается на многочисленных литературных источниках, основные из которых приведены в данном пособии, в разделе литература.

www.privod.ru www.owen.ru www.kipservis.ru

Лекция №1 Классификация, структура автоматизированных

электроприводов (АЭП)

2) Структура автоматизированного электропривода (АЭП)

3) Коэффициент полезного действия АЭП

4) Достоинства АЭП

1 Классификация электроприводов

В зависимости от выполняемых функций, вида и числа регулируемых координат, степени автоматизации технологических процессов реализация ЭП может быть самой разной (рисунок 1).

Неавтоматизированный

Автоматизированный

Разомкнутый Замкнутый

Рисунок 1 - Классификация ЭП

Неавтоматизированные ЭП - управление с помощью оператора, который осуществляет пуск, остановку, изменение скорости, реверсирование ЭП в соответствии с заданным технологическим циклом.

Автоматизированный ЭП - операции управления выполняются в соответствии с требованиями технологического процесса. Операции выполняются системой управления (на оператора возлагаются функции включения и выключения ЭП). Очевидно, что автоматизированный ЭП является более эффективным и экономически целесообразным, т.к. освобождает человека от утомительного и однообразного труда, повышает производительность труда, качество технологического процесса.

Разомкнутый ЭП - характеризуется тем, что все внешние воздействия (например, момент инерции) влияют на его входную координату, например скорость. Данный вид ЭП отличается простотой и применяется в основном для пуска, торможения и реверса двигателей.

Замкнутые ЭП - отличительной особенностью является полное или частичное устранение влияния внешнего воздействия на регулируемую координату, например скорость. Схемы как правило сложные.

Регулирование по возмущению - дополнительный сигнал, пропорциональный возмущению подаётся на вход ЭП вместе с сигналом задания, в результате суммарный сигнал обеспечивает управление ЭП. Данное регулирование не нашло должного применения из-за сложности реализации датчиков возмущающих воздействие в частности момента нагрузки – Мс

Регулирование по принципу отклонения (принцип обратной связи) - характеризуется наличием цепей обратной связи. Информация о регулируемой координате подаётся на вход ЭП в виде сигнала обратной связи, который сравнивается с задающим сигналом и полученный результирующий сигнал (рассогласования, отключения, ошибки) является управляющим сигналом для ЭП (рис.2). Обратные связи могут быть положительными и отрицательными, линейными и нелинейными, жесткими и гибкими и др.

К ос

Рисунок 2-Замкнутые структуры АЭП с компенсацией по возмущению (а), с обратной связью (б)

Положительной называется такая обратная связь, сигнал которой направлен согласно (т.е складывается) с задающим сигналом.

Отрицательная ОС - сигнал ОС направлен встречно задающему сигналу. Жесткая ОС - действует, как в установившемся, так и переходном режи-

Гибкая ОС - действует только в переходных режимах.

Линейная ОС - характеризуется пропорциональной зависимостью между регулируемой координатой и сигналом ОС.

Нелинейная ОС - данная зависимость не линейна.

2 Структура АЭП

Автоматизированным электроприводом называют электромеханическую систему, состоящую в общем виде из электродвигательного, преобразовательного, передаточного и управляющего устройств и предназначенную для приведение в движение исполнительных органов рабочих машин и управления этим движением (рисунок 3).

Источник электрической энергии (ИЭЭ)

Преобразователь- ное устройство

Uд ,Iд ,fд

Управляющее

Электродвига-

устройство (УУ)

тельное устрой-

Мд , ωд

Fд , Vд

обратные

Передаточное

устройство (ПРД)

Мм (Fм ), ωм (Vм )

Потребитель механической энергии (ПМЭ)

Рисунок 3 – Структурная схема АЭП

Основное назначения АЭП - преобразование электроэнергии в механическую энергию исполнительных органов машин и механизмов. В отдельных случаях (генераторный режим, торможение) возможно и обратное преобразование.

На долю АЭП приходится 60% вырабатываемой в стране электроэнергии.

На рисунке 3 представлены:

потоки электрической энергии - , потоки механической энергии - ;

ПРБ - преобразовывают эл.энергию в необходимый вид (магнитные пускатели, тиристорные коммутаторы, регуляторы, преобразователи и т.д.);

ПРДпреобразовывают механическую энергию в необходимый вид для потребителя механической энергии (ПМЭ) (муфты, шкивоременные передачи, редукторы и т.д.);

УУ - информационная часть (микропроцессорные средства, микроЭВМ).

3 Коэффициент полезного действия АЭП

Как и для всякого электромеханического устройства, важным показателем является коэффициент полезного действия

АЭП= ПРБ· ЭД· ПРД,

т.к. коэффициент полезного действия ПРБ и ПРД ≈1 и мало зависит от нагрузки, то АЭП определяется ЭД , которое также является достаточно высоким и при номинальной нагрузки составляет 60-95%.

Малое КПД соответствует тихоходным двигателям малой мощно-

При повышении мощности выше 1кВт ЭД и соответственно АЭП превышает 70%.

4 Достоинства АЭП

1) низкий уровень шума при работе;

2) отсутствие загрязнения окружающей среды;

3) широкий диапазон мощностей и угловых скоростей вращения;

4) стабилизация выходной координаты;

5)доступность регулирования угловой скорости вращения и соответственно производительности технологической установки; 6)относительная простота автоматизации, монтажа, эксплуатации по срав-

нению с тепловыми двигателями, например, внутреннего сгорания, а также гидро и пневмоприводами.

Лекция 2 Регулирование координат ЭП

1) Показатели регулирования скорости ЭП

2) Регулирование момента, тока, положения ЭП

3) Способы регулирования частоты вращения ДПТ

4) Способы регулирования частоты вращения АД

1 Показатели регулирования скорости ЭП

Для обеспечения требуемых режимов работы машин, производственных механизмов и самого ЭП некоторые переменные, которые характеризуют их работу, должны регулироваться. Такими переменными, часто называемыми в ЭП координатами, являются, например, скорость, ускорение, положение исполнительного органа (ИО) или любого другого механического элемента привода, токи в электрических цепях двигателей, моменты на их валу и др.

Типичным примером необходимости регулирования координат может служить ЭП пассажирского лифта. При пуске и остановке кабины лифта для обеспечения комфортности пассажиров ускорение и замедление ее движения ограничиваются. Перед остановкой скорость кабины должна снижаться, т. е. регулироваться. И, наконец, кабина с заданной точностью должна останавливаться на требуемом этаже. Такое управление движением кабины лифта обеспечивается за счет регулирования соответствующих координат (переменных) ЭП лифта.

Процесс регулирования координат всегда связан с получением искусственных (регулировочных) характеристик двигателя, что достигается целенаправленным воздействием на двигатель.

Регулирование скорости ЭП.

Регулирование скорости движения исполнительных органов требуется во многих рабочих машинах и механизмах - прокатных станах, подъем- но-транспортных механизмах, горнодобывающих и бумагоделательных машинах, металлообрабатывающих станках и др. С помощью ЭП обеспечиваются регулирование и стабилизация скорости движения их ИО, а также изменение скорости ИО в соответствии с произвольно изменяющимся задающим сигналом (слежение) или по заранее заданной программе (программное движение). Рассмотрим, каким образом с помощью ЭП можно обеспечивать регулирование скорости ИО рабочих машин.

Как следует из обшей схемы ЭП (лекция 1), скорость двигателя и ИО при его вращательном (поступательном) движении связаны между собой соотношениями

Анализ выражения показывает, что регулировать скорость движения ИО можно воздействуя или на механическую передачу (i - передаточное отношение редуктора), или на двигатель, или на то и другое одновременно.

В первом случае воздействие заключается в изменении передаточного числа или радиуса приведения механической передачи при постоянной скорости двигателя, поэтому этот способ регулирования получил название механического. Для его реализации используются коробки передач (при ступенчатом регулировании), вариаторы и электромагнитные муфты (для плавного регулирования). Применяется механический способ ограниченно из-за сложности автоматизации таких технологических процессов, малого набора регулируемых механических передач указанного типа и их невысоких показателей надежности и экономичности.

Способ регулирования скорости ИО, получивший название электрического, предусматривает воздействие на двигатель при неизменных параметрах механической передачи. Этот способ нашел широкое применение в современных ЭП вследствие его больших регулировочных возможностей, простоты, удобства использования в общей схеме автоматизации технологических процессов и экономичности.

Комбинированный способ регулирования скорости ИО применяется ограниченно в основном в ЭП металлообрабатывающих станков.

Итак, управление движением исполнительных органов современных рабочих машин и механизмов в большинстве случаев достигается за счет целенаправленного воздействия на электродвигатель с помощью его системы управления с целью получения соответствующих искусственных характеристик.

Для примера на рисунке 1 показаны естественная механическая характеристика 1 двигателя постоянного тока независимого возбуждения (ДПТ НВ) и две искусственные - при введении в цепь якоря добавочного резистора с сопротивлением (прямая 2) и уменьшении подаваемого на якорь напряжения (прямая 3). Обе эти искусственные характеристики обеспечивают при моменте нагрузки Мс снижение скорости до требуемого уровня. Увеличение скорости ДПТНВ выше номинальной может быть получено за счет уменьшения его магнитного потока.

Для количественной оценки и сопоставления различных способов регулирования скорости используются следующие показатели.

Диапазон регулирования скорости, определяемый отношением

максимальной скорости к минимальной, т.е. D max . Нижний предел,

как правило ограничен перегрузочной способностью и жесткостью характеристик.

В соответствии с рисунком 1 диапазон регулирования будет определяться отношением частот вращения при заданном моменте нагрузки Мс .

Мс

ω ном

ωи

Рисунок 1 – Варианты регулирования частоты вращения ДПТ НВ

Стабильность скорости , характеризуемая изменением скорости при возможных колебаниях момента нагрузки на валу двигателя и определяемая жесткостью его механических характеристик. Чем она больше, тем стабильнее скорость при изменениях момента нагрузки, и наоборот. В рассматриваемом примере большая стабильность обеспечивается при искусственной характеристике 3.

Плавность регулирования скорости, определяемая перепадом ско-

рости при переходе с одной искусственной характеристики на другую. Чем больше в заданном диапазоне регулирования скорости может быть получено искусственных характеристик, тем плавнее будет происходить регулирование скорости.

Направление регулирования скорости. В зависимости от способа воздействия на двигатель и вида получаемых искусственных характеристик его скорость может увеличиваться или уменьшаться по сравнению с работой на естественной характеристике при данном моменте нагрузки. В первом случае говорят о регулировании скорости вверх от основной характеристики, во втором - вниз. Можно сказать, что регулирование скорости вверх связано с получением искусственных механических характеристик, располагающихся выше естественной, а регулирование скорости вниз обеспечивается характеристиками, располагающимися ниже естественной.

Допустимая нагрузка двигателя. Электрический двигатель рассчитывается и проектируется таким образом, чтобы, работая на естественной характеристике с номинальными скоростью, током, моментом и мощностью, он не нагревался выше определенной температуры, на которую рассчитана его изоляция. В этом случае срок его службы является нормативным и составляет обычно 15...20 лет.

Поскольку потери энергии при нагреве двигателя пропорциональны квадрату тока, нормативный нагрев будет иметь место при протекания но-

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД

Курс лекций для студентов специальности

"Металлообрабатывающие станки и инструменты"

ГЛАВА 1 ОБЩИЕ ВОПРОСЫ АЭП. МЕХАНИКА АЭП

1.1. Основные понятия и определения

1.1. Механические характеристики рабочих машин и ЭД

1.2. Механические характеристики ДПТ

1.3. Механические характеристики АД

1.4. Механические характеристики СД

ГЛАВА 2 МЕТОДЫ РАСЧЕТА МОЩНОСТИ И ВЫБОРА ЭЛЕКТРОДВИГАТЕЛЕЙ

2.1. Силы и моменты, действующие в ЭП

2.2. Приведение моментов сопротивления и инерции к валу двигателя

2.3. Общие замечания. Нагрев и охлаждение двигателей

2.4. Метод средних потерь. Эквивалентные методы.

2.5. Серии электродвигателей, применяемых в станках

ГЛАВА 3 ЭЛЕМЕНТЫ СИЛОВОЙ И РЕГУЛИРУЮЩЕЙ ЧАСТЕЙ СЭП

Классификация электронных устройств СЭП

3.1. Тиристорные преобразователи

3.2. Транзисторные преобразователи

3.3. Типовые датчики

3.4. Типовые узлы защиты ЭП

3.5. Типовые регуляторы

ГЛАВА 4 ТИПОВЫЕ СЭП МЕТАЛЛОРЕЖУЩИХ СТАНКОВ

4.1. Принципы построения типовых СЭП

4.2. Одноконтурная СЭП постоянного тока

4.3. СПР ЭП постоянного тока с однозонным управлением

4.4. СПР ЭП постоянного тока с двухзонным управлением

4.5. СЭП переменного тока с АИН и АИТ (схемы с ОС по скорости и току)

4.6. Системы стабилизации технологических параметров при резании металлов

ГЛАВА 5 СЛЕДЯЩИЕ СЭП МЕТАЛЛОРЕЖУЩИХ СТАНКОВ

5.1. Типовые структуры следящих ЭП и их элементы

5.2. Следящий ЭП с подчиненным регулированием параметров

5.3. Следящий ЭП подачи копировально-фрезерных станков

ЛИТЕРАТУРА

1. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: Учебник для вузов / М.П. Белов, В.А. Новиков, Л.Н. Рассудов. – М.: Издательский центр "Академия", 2004. – 576 с.

2. Инжиниринг электроприводов и систем автоматизации: учеб. пособие для студ. высш. учеб. заведений / М.П. Белов, О.И. Зементов, А.Е. Козярук и др.; под. ред. В.А. Новикова, Л.М. Чернигова. – М.: Издательский центр "Академия", 2006. – 368 с.

3. Ковчин С.А., Сабинин Ю.А. Теория электропривода: Учебник для вузов. – СПб.: Энергоатомиздат, 2000. – 496 с.

4. Шестаков В.М., Дмитриев Б.Ф., Репкин В.И. Электронные устройства систем автоматического управления: Учебное пособие. – СПб: Изд. ЛГТУ, 1991.

ГЛАВА 1. ОБЩИЕ ВОПРОСЫ АЭП. МЕХАНИКА АЭП.

1.1. Основные понятия и определения

Существуют различные виды приводов, но благодаря эффективному аккумулированию, простоте передачи, свойствам суммирования и делимости электроэнергия более широко используется по сравнению с другими видами энергии. В настоящее время наиболее часто используется автоматизированный электропривод (ГОСТ Р 50369-92).

Электрическим приводом (ЭП) называется электромеханическая система, предназначенная для приведения в движение рабочих органов машин, целенаправленного управления этими процессами и состоящая из передаточного, электродвигательного, преобразовательного, управляющего и информационного устройств.

Передаточное устройство предназначено для преобразования форм движения и передачи механической энергии от двигательного устройства к рабочим органам машины.

Двигательное устройство преобразует электрическую энергию в механическую и формирует совместно с передаточным устройством заданные формы движения рабочих органов.

Преобразовательное устройство служит для связи СЭП с источником электроэнергии (промышленная сеть или автономный), для преобразования одной формы электроэнергии в другую (например, выпрямление переменного тока).

Управляющее и информационное устройства предназначены для формирования заданных законов управления потоком энергии и движения рабочих органов машин.

Классификация ЭП

1. По назначению: а) главные (например, главного движения);

б) вспомогательные (например, подачи).

2. По роду потребляемого тока двигателя: а) постоянного тока;

б) переменного тока.

3. По виду силовых ключей: а) тиристорные;

б) транзисторные;

в) микропроцессорные

4. По виду системы автоматического управления (САУ):

а) аналоговые (непрерывные) системы ЭП (СЭП);

б) цифровые (дискретные) СЭП;

в) цифроаналоговые СЭП;

г) линейные или нелинейные СЭП;

д) статические или астатические СЭП;

5. По выполняемым функциям:

а) грубое регулирование скорости (разомкнутые СЭП);

б) точное регулирование скорости (замкнутые СЭП);

в) слежение за произвольно изменяющимися входными сигналами (следящие системы);

г) программная отработка заданий (СЭП с программным управлением);

д) взаимосвязанное регулирование параметров (многодвигательные и взаимосвязанные СЭП);

Функции а)-д) считаются основными. К дополнительным функциям относятся: сигнализация (диагностика) и защита ЭП.

Механические характеристики асинхронных двигателей (АД)

1) Механические характеристики 3-фазных АД

Асинхронный электродвигатель имеет трехфазную обмотку статора. При подаче на неё трехфазного напряжения частотой , образуется магнитное поле, вращающееся с угловой скоростью , где - число10

пар полюсов статора (определяется укладкой обмотки).

Ротор АД чаще всего выполняется короткозамкнутым ("беличья клетка"). В подъёмных и транспортных машинах применяют фазный ротор, где обмотка ротора через контакные кольца выводится на неподвижное основание и соединяется с добавочными сопротивлениями.

В настоящее время АД по умолчанию применяют для привода большинства объектов.

При описании АД электрические параметры двигателя имеют индексы: 1 – статор; 2 – ротор.

При R 1 =0 механическая характеристика описывается формулой

, где - критический момент; - скольжение.

1 – естественная ();

1" – реверс (меняются местами две из трех фаз);

4 – АД с фазным ротором , .

тормозные режимы

5 – динамическое торможение: на обмотку статора подается постоянный ток, тогда раскручиваемый ротор будет тормозиться;

6 – противоток (реверс): (меняются местами две фазы);

7 – рекуперация , реверс момента. Для торможения до нуля требуется ПЧ, который непрерывно снижает .

Пуск АД: Для ограничения пусковых токов АД большой мощности или получения плавного пуска асинхронного привода применяют:

1) включение активных или индуктивных сопротивлений в цепи статора, которые выводятся в конце пуска;

2) "частотный" пуск через преобразователь, плавно изменяющий частоту питания двигателя ;

3) пуск с фазным ротором;

4) реакторный пуск – включение индуктивных сопротивлений в цепь ротора. Вначале пуска частота тока в роторе близка к частоте сети, индуктивное сопротивление велико и ограничивает пусковой ток.

2) Механические характеристики двухфазных АД

Выпускаются на мощность до 1 кВт. Могут выполняться со сплошным или полым ротором. ОВ, ОУ – соответственно обмотки возбуждения и управления; Для сдвига фаз в цепь ОВ последовательно включают конденсатор емкостью 1-2 мкФ на каждые 100 Вт.

При однофазном включении .

Примечание: при частотном управлении характеристики станут линейными и параллельными друг другу, при фазовом – только линейными.

Общие замечания

1) Задачей является грамотный выбор электродвигателя для заданного механизма (агрегата) с учетом допустимого нагрева и перегрузки по току и моменту.

Потери делятся на:

Постоянные – механические и в стали – не зависят от тока двигателя;

Переменные – в меди – являются функцией квадрата тока двигателя.

Связь между потерями и КПД:

, где Р – мощность на валу; Р 1 – потребляемая мощность.

2) Нагрев и охлаждение ЭД при длительном режиме работы.

- количество тепла, выделяемое (генерируемое) электродвигателем;

Теплоемкость двигателя;

- теплоотдача.

При неизменной температуре окружающей среды температура двигателя будет возрастать по закону , где - постоянная времени нагрева, с; , град.

3) Режимы работы двигателей

а) длительный (S1)

б) кратковременный (S2)

в) повторно-кратковременный (S3, S4)

продолжительность включения , где - скважность;

стандартизированы ПВ% = 15, 25, 40, 60 %

4) Классы изоляции и допустимые рабочие температуры двигателей.

В соответствии с международными стандартами различают следующие классы изоляции

В двигателях общего назначения применяется изоляция классов B и F.

5) Климатическое исполнение электрических машин

6) Степени защиты электрических машин (ГОСТ 14254-80 и ГОСТ 17494-72)

Общее обозначение типа защиты (International Protection) – IP, где

1-я цифра: степень защиты персонала от соприкосновения с движущимися частями оборудования и от попадания внутрь оболочки твердых посторонних тел;

2-я цифра: степень защиты от попадания внутрь оборудования воды.

IP Цифра 1 Цифра 2
Защита от прикосновения Защита от попадания посторонних предметов Защита от попадания воды
Не защищено Не защищено Не защищено
От прикосновения большой площади (рукой) От предметов размером более 50 мм От водяных капель, падающих вертикально
От прикосновения пальцами От предметов размеров более 12 мм От вертикально падающих капель и брызг под наклоном до 15 0 к перпендикуляру
От прикосновения предметами или проволокой диаметром более 2,5 мм *) От предметов размером более 2,5 мм От вертикально падающих капель и брызг под наклоном до 60 0 к перпендикуляру
От прикосновения предметами или проволокой диаметром более 1 мм *) От малых твердых предметов (более 1 мм) От капель воды со всех сторон
От прикосновения вспомогательными средствами любого типа *) От осаждения пыли внутри От струй воды со всех сторон
От прикосновения вспомогательными средствами любого типа От попадания любой пыли От волн воды
- - Защиты при погружении в воду
- - Защита при длительном погружении в воду

*) Не относится к вентиляторам электрических машин

Стандартное исполнение защиты двигателей IP 54. По заказу обеспечиваются повышенные степени защиты IP 55 и IP 65.

Приводы, работающие с большим количеством включений

Приводы с дополнительной инерционной массой (инерционной крыльчаткой)

Приводы с управлением от преобразователя с диапазоном регулирования свыше 1:20

Приводы с управлением от преобразователя, сохраняющие номинальный вращающий момент при низкой частоте вращения или в положении останова

Методы расчета мощности

Выбор мощности двигателя при стационарной нагрузке осуществляется по условию (ближайший больший по каталогу). В этом случае двигатель подошел по нагреву.

Рассмотрим выбор мощности двигателей при переменной нагрузке:

1. Метод средних потерь (прямой метод).

В основе метода лежит нагрузочная диаграмма. Рассмотрим прямой метод учета потерь в двигателе

1) Рассчитывается средняя мощность на валу двигателя по формуле

, Закон Джоуля-Ленца

Потери в двигателе пропорциональны активной мощности. Таким образом, нагрев двигателя определяется не , а . Отсюда возникает задача расчета потерь.

2) выбор мощности двигателя ,

где k= 1,2...1,3 – коэффициент запаса, учитывающий пропорциональность потерь квадрату тока;

3) Расчет потерь при различных нагрузках с использованием каталожных кривых по формуле

4) определяются средние потери за цикл ;

5) выбор мощности двигателя по условию , где - двигатель подошел по нагреву;

6) выбранный двигатель должен быть проверен на перегрузку и пусковые условия

ДПТ: , ;

АД: ,

Эквивалентные методы

Данные методы относятся к косвенным, поскольку косвенно учитывают потери в электрической машине.

1) Метод эквивалентного тока.

Рассчитывается некоторый эквивалентный ток, потери от которого равнозначны фактическим при переменной нагрузке т.к.

2) Метод эквивалентного момента при Ф-const

; - двигатель подошел по нагреву.

3) Метод эквивалентной мощности при Ф-const, -const

; - двигатель подошел по нагреву.

Затем выбранный двигатель должен быть проверен на перегрузку и пусковые условия.

Наиболее широкое применение у метода эквивалентного тока, наиболее узкое у метода эквивалентной мощности. Методы эквивалентного тока и мощности не применимы при двухзонном управлении так как содержат блоки произведений в формулах , . Более точным является метод средних потерь (прямой метод).

Замечание: При повторно-кратковременный режиме двигатель выбирается из условия .

;

Здесь методы эквивалентного момента и тока практически не используются. В случае, если нагрузка в разных циклах неодинакова, рассчитывают среднюю ПВ с учетом n циклов.

Тиристорные преобразователи

Достоинства: а) надежность; б) малая масса; в) малая мощность управления; г) высокое быстродействие; д) высокий КПД (0,95-0,97)

Недостатки: а) не выдерживает перегрузок; б) снижение сos при малых нагрузках; в) генерация высших гармонических колебаний в сеть при коммутации вентилей (для борьбы с ними включают ТОР)

1. Схемы ТП и способы управления:

1) Нулевая схема реверсивного привода

m=3 – фазность преобразователя. Достоинства: меньшее количество тиристоров. Применяется в маломощных приводах.

2) Мостовая схема выпрямления реверсивного привода (схема Ларионова)

m=6; Достоинства: а) меньшее количество сглаживающих дросселей; б) меньший класс тиристоров; Применяется в приводах средней и большой мощности.

2. Способы управления реверсивными ТП:

а) раздельное, когда группы тиристоров управляются поочередно.

Достоинства: 1) отсутствие уравнительного тока и, следовательно необходимости включения уравнительных реакторов (УР);

Недостатки: 1) широкая зона прерывистых токов; 2) нелинейность механических характеристик в начале координат; 3) замедленный реверс напряжения преобразователя.

Вместе с тем раздельное управление ТП применяется чаще.

б) согласованное, когда обе группы тиристоров управляются совместно, по условию , причем , ;

Достоинства: 1) линейная характеристика; 2) узкая зона прерывистых токов; 3) быстрый реверс.

Недостатки: 1) наличие статических и динамических уравнительных токов. Для борьбы с ними включают уравнительные реакторы (УР).

3. Математическое описание ТП

1) Система управления тиристорным преобразователем (СУТП) или система импульсно-фазового управления (СИФУ)

а) со стабилизированным пилообразным опорным напряжением . Не содержит высших гармоник в опорном напряжении, обеспечивает четкое открытие тиристоров и применяется в ТП средней и большой мощности.

б) с нестабилизированным синусоидальным опорным напряжением . Применяется в маломощных ТП при широком диапазоне регулирования скорости ТП.

в) если СУТП является цифровой, то угол открытия тиристоров , где - код числа.

2) Силовая часть ТП.

Описывается выражением , где - максимальная выпрямленная ЭДС ТП. Кроме того, ТП имеет запаздывание , среднестатистическое . При m=6 .

а) СУТП со стабилизированным пилообразным опорным напряжением.

Нелинейная зависимость .

б) СУТП с нестабилизированным синусоидальным опорным напряжением.

; - линейная зависимость !

Из рисунков видно, что колебания напряжения сети переменного тока (пунктирная линия) влияют на выходную ЭДС в случае а) и не влияют в случае б).

3) Нагрузка ТП (двигатель). Формирует характер тока преобразователя, который может быть непрерывным, гранично-непрерывным и прерывистым.

Характер тока влияет на характеристики привода. В зоне непрерывного тока характеристики жесткие, поскольку внутреннее сопротивление преобразователя невелико. При прерывистом токе внутреннее сопротивление ТП существенно возрастает, что снижает жесткость характеристик. , где - коммутационное сопротивление. образуется в режиме непрерывного тока при перекрытии фаз. - динамическое сопротивление тиристоров.

Зона прерывистого тока крайне неблагоприятна для регулирования, так как падает жесткость характеристик привода, и появляется нелинейная зависимость (см. рис.).

Типовые датчики

Рассмотрим датчики отечественной универсальной системы блочных регуляторов аналогового исполнения (УБСР-АИ).

1) Датчик тока ДТ1-АИ Применение операционного усилителя (ОУ) позволяет развязать силовую и управляющую цепи привода, что также необходимо по технике безопасности. Коэффициент усиления подбирается так, чтобы максимальному измеряемому току соответствовало .

2) Датчик напряжения ДН1-АИ. Коэффициент усиления подбирается так, чтобы максимальному измеряемому напряжению соответствовало .

3) Датчик ЭДС

3) Датчики скорости. В качестве датчиков скорости используются прецизионные тахогенераторы постоянного и переменного тока .

4) Датчики положения

а) Резольвер (англ. resolver). Работает по принципу синусно-косинусного вращающегося трансформатора (СКВТ). У вращающегося трансформатора ротор состоит из катушки (обмотки), которая вместе с обмоткой статора образует трансформатор. Принципиально резольвер устроен точно так же с той лишь разницей, что статор выполнен не из одной, а из двух расположенных под углом 90° друг к другу обмоток. Резольвер служит для определения абсолютного положения вала двигателя внутри одного оборота. Кроме того, по сигналу резольвера определяется значение скорости и моделируется инкрементный датчик для регулирования положения. Ротор резольвера закреплен на валу двигателя. Для того чтобы можно было передавать переменное несущее напряжение на ротор без щеток, на статоре и роторе размещены дополнительные обмотки. По двум выходным синусоидальным напряжениям и , сдвинутым на 90° (рис. 7), можно определить угол поворота ротора, скорость и инкрементный сигнал по положению (моделирование инкрементного датчика).

б) Фотоэлектрические датчики серии ПДФ. Отсутствие температурного и временного дрейфа. 500-5000 имп/об.

5) Датчики рассогласования. Применяются в следящих системах.

а) Потенциометрические датчики рассогласования

б) Сельсины в трансформаторном режиме. Сельсин имеет 2-фазную обмотку статора и 3-фазную обмотку ротора. Ось сельсина-датчика приводится в движение от задающего устройства, а ось сельсина-приемника – от исполнительного. При разности углов (т.е. ошибке слежения) на статорной обмотке генерируется напряжение . Сельсины работают с углами ошибки до 90 градусов, дальше происходит "опрокидывание" сигнала (см.рис.). Существуют также индуктосины – линейные аналоги сельсинов.

Типовые регуляторы

1) Статика описывается алгебраическими уравнениями (АУ), а динамика – дифференциальными ДУ. Для облегчения исследования динамики сложных электромеханических систем с помощью преобразования Лапласа переходят из временной t-области в р-область изображений, где р (s) – оператор дифференцирования (Лапласа), . При этом ДУ заменяются АУ.

Передаточной функцией (ПФ) W(p) называется отношений изображений по Лапласу выходной переменной к входной (см. курс ТАУ).

2) Показатели качества переходного процесса. Рассмотрим переходный процесс в замкнутой системе:


а) Статическая ошибка ;

б) Время переходного процесса – время последнего вхождения регулируемой величины в 5% зону;

в) Перерегулирование ;

3) Типовые регуляторы. Используются в замкнутых системах для получения требуемых показателей качества. Наиболее часто применяются пропорциональные (П), пропорционально-интергальные (ПИ) и пропорционально-интегрально-дифференциальные (ПИД) регуляторы. Выбор типа регулятора определяется передаточной функции объекта управления. Передаточные функции регуляторов

; ;

Реализация аналоговой схемы Коэффициент усиления
;
; ;

Одноконтурные СЭП